Simulated microgravity induces changes in breast cancer cells

P-35-032

S. Strada^{I,II}, N. Bloise^{I,II,III}, P. Hollos^{IV}, L. Visai^{II,III,V}

¹Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, 27100 Pavia, Italy, Pavia, Italy, ^{II}Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100 Pavia, Italy, Pavia, Italy, ^{III}Interuniversity Center for the promotion of the 3Rs principles in teaching and research (Centro 3R), University of Pavia Unit, Italy, Pavia, Italy, ^{IV}Litegrav (litegrav.AI OU) Tatari 56, 10134 Tallinn, Estonia, Tallin, Estonia, ^VDepartment of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, 27100 Pavia, Italy, Pavia, Italy

Many astronauts have reported various side effects after long-term space missions in orbit such as cardiovascular changes, reduction of bone density and muscle atrophy. The effects of microgravity (μ g) on cellular properties may be related to these health problems. Numerous studies have shown that μ g has a major impact on cancer cells affecting proliferation, survival, migration and inducing breast cancer cells to adopt a less aggressive phenotype. Studies performed on MCF-7, a human breast cancer cell line ER- α positive, showed that in μ g cells activate genes that are involved in the organization and regulation of the cell shape, cell tip formation, and membrane-to-membrane docking ¹. The purpose of this study was to evaluate the behavior of MCF-7 and SKBR-3 (human breast cancer cell line overexpressing HER-2) under simulated μ g. 3D- μ g simulator research cube provided by Litegrav was used in 3Dclinostat mode with random path distribution and μ -Slide 8 well for cell growth. Specifically, the evaluation of cancer cell behavior at different time points (1,3 and 5 days) was performed by phase-contrast microscopy, cytoskeleton staining, viability assays and changes in gene and protein expression by real-time PCR with Western blot confirmation. Morphological changes were observed in both cancer cell types under simulated μ g, while cell viability was not affected. In particular, the difference in actin filament organization of cells in μ g was confirmed by confocal laser scanning microscopy as well as differential gene expression. Data show how simulated μ g induces changes in cell morphology and suggest the activation of specific gene programs, that may be involved in tumor development or the metastatic process. A deeper understanding of the mechanisms involved may lead to the development of new therapeutic strategies. Research conducted in simulated μ g can provide a reliable tumor model to study different processes of cancer progression.

[1] Kopp S, et al. Sci Rep. 6, 2016