Molecular insights into G-protein specificity and biased agonism at the $\beta 2$ -adrenergic receptor

ShT-01.7-2

M. Casiraghi^I, H. Wang^I, P. Brennan^I, C. Habrian^I, H. Hübner^I, M. Schmidt^I, L. Maul^I, B. Pani^I, S.M. Bahriz^I, B. Xu^I, E. White^{II}, R.K. Sunahara^I, Y.K. Xiang^I, R.J. Lefkowitz^I, E.Y. Isacoff^I, N. Nucci^I, P. Gmeiner^I, M.T. Lerch^I, B.K. Kobilka^I

^IUniversita degli studi di milano, Milano, Italy, ^{II}Stanford University, Stanford, CA, United States of America

G protein coupled receptors (GPCRs) activated by their native hormone or neurotransmitter exhibit varying degrees of selectivity for different G protein isoforms. Despite the abundant structures of different GPCR-G protein complexes, little is known about the mechanism of G protein coupling specificity. There are a growing number of examples of pathway-selective or biased synthetic agonists that alter the G protein coupling preference for specific GPCRs. The β 2AR is an example of a GPCR with high selectivity for coupling to Gas, the stimulatory G protein for adenylyl cyclase, and much weaker for the Gi family of G proteins that inhibit adenylyl cyclase. While the Gas pathway is the major therapeutic target for β 2AR agonists, β 2ARs have been shown to couple to Gai isoforms in the heart, and this Gai signaling may have relevance in the pathogenesis of heart failure. Here we present a new Gai-biased agonist (LM189) for Gai activation by the β 2AR. We provide structural and biophysical evidence that the Gai bias of LM189 can be attributed to an alteration in the structure and dynamics of ICL2 and TM6.